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A new and e$cient semi-analytical phase-space linearization (PSL) scheme for
a class of non-linear oscillators is developed in this paper. The method is based on
replacement of the non-linear vector "eld by a set of linear ones, each valid over
a short segment of the evolving trajectory or over su$ciently small interval of time.
Based on this concept, a few explicit and implicit integration schemes are "rst
proposed and applied to a class of low-dimensional non-linear dynamical systems
to accurately determine their response trajectories. This approach of local
linearization is further extended to non-linear oscillators excited by formal
derivatives of one or a combination of Gauss}Markov processes. Since the present
methodology reduces the non-linear operator by a set of linear operators, it is also
demonstrated that the principles of linear random vibration may be suitable
exploited to arrive at a faster and semi-analytical Monte-Carlo scheme for
computing the response statistics, both in stationary and non-stationary regimes.
Limited examples are presented and compared with exact solutions whenever
available, to illustrate the e$ciency and versatility of the proposed schemes.

( 2000 Academic Press
1. INTRODUCTION

Recently, Iyengar and Roy [1, 2] proposed a phase-space linearization (PSL)
method to decompose a given non-linear system into a set of linear ones, each
representing the original system locally over a short segment of the evolving
trajectory in the associated phase space. The PSL method was found to be versatile
enough to accurately predict a wide variety of response patterns, such as one- or
multi-periodic, almost periodic, quasi-periodic and chaotic. A procedure based on
locally de"ned least-squares error minimization was suggested to derive the set of
linearized equations. It was further pointed out that the procedure to derive such
locally linearized ordinary di!erential equations (ODEs) was not unique and thus
merited further attention. In case the system along with the excitations are
deterministic, the local error minimization scheme led to a set of non-linear
algebraic equations for the unknown coe$cients, which in turn are required to
construct the linearized ODEs. It may however be observed that such a scheme
becomes unwieldy when the system is driven by stochastic or a combination of
0022-460X/00/120307#35 $35.00/0 ( 2000 Academic Press



308 D. ROY
deterministic and stochastic excitations. It is therefore a necessity to explore other
forms of linearization principles within the framework of PSL, so that the response
scenario of non-linear oscillators in a stochastic regime can be conveniently
explored [3].

In very much the same way a deterministic non-linear oscillator exhibits chaos
and addition of random noise may induce the system to exhibit stochastic chaos as
well. As has been shown by Simiu and Frey [4], an oscillator having a homoclinic
orbit in the unperturbed phase space may undergo a series of homoclinic
bifurcations "nally leading to stochastic chaos under external stochastic
perturbations. A contradictory scenario, in which addition of a small quasiperiodic
noise may decrease the zones of existence of each of the period-doubled orbits, has
also been reported by Kapitaniak [5, 6]. Non-linear oscillators are generically
non-integrable and thus exact sample solutions for the stochastic #ow are ruled out.
For systems driven by Gaussian white noise, solutions of the associated Fokker
Planck equation, even under the assumption of stationarity, are also rarely possible
[7]. This emphasizes in no uncertain terms the usefulness of numerical or
semi-analytical algorithms for the study of response behaviour of a general
non-linear dynamical system of engineering importance. Stochastic counterparts of
many of the deterministic numerical integration procedures, such as Euler,
Runge}Kutta of di!erent orders, etc., are available [8, 9]. More recently, Askar
et al. [10] proposed a faster simulation method based on a piecewise linearization
of non-linear drift coe$cients. The method, however, does not re#ect on the
accuracy of pathwise solutions of response trajectories.

The present study is aimed at developing, within the broad framework of PSL,
a robust semi-analytical algorithm based on pathwise and segmented linearizations
of associated vector "elds to integrate non-linear ODEs under deterministic and
stochastic excitations. Such a representation not only helps in e$cient integration,
but also in a better physical understanding of the underlying dynamical behaviour
using the well-established theories in linear dynamics. Towards this, a few implicit
and explicit schemes are "rst proposed for deterministic systems along with some
numerical examples and comparisons with computer simulations. The explicit
scheme is next extended for non-linear oscillators driven by a combination of
deterministic and stochastic excitations. The stochastic excitations considered in
this study are white-noise processes, described by formal time derivatives of
Gaussian Wiener processes. The essence of the explicit linearization procedure is to
use a short-time-averaged Ito}Taylor or Wagner}Platen expansion for replacing
the non-linear terms in the vector "eld by linear ones. Based on this, a direct
simulation procedure is formalized for computing response statistics of non-linear
dynamical systems. Further, it is shown that one can suitably exploit the set of
linearized vector "elds, each valid over short trajectory segments, to solve for
associated Fokker}Planck equations in closed form. The corresponding transition
probability density (TDP) is Gaussian given the sharp values of the state variables
at the immediately preceding time instant. Limited numerical illustrations of the
method are provided. The advantage of the present schemes over the usual path
integral formalism, based on an expansion of the Fokker}Planck equation over
a short time interval [11, 12], is also brie#y touched upon.
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2. THE CONCEPT OF LINEARIZATION

The concept of local linearizations of vector "elds around "xed points, or more
generally non-wandering sets, is well studied in the literature on non-linear
dynamical systems [13, 14]. In particular, it is known from Hartman's theorem that
if p is a hyperbolic "xed point of the non-linear oscillator, then there exists a C0
homeomorphism locally taking the actual orbits to the orbit of the linearized
variational equation, de"ned by

>Q "D
X
(p)>, (1)

where X is the original co-ordinate vector. However, there is no way to explicitly
construct this homeomorphism and, moreover, away from the "xed point, p,
Hartman's theorem is no longer valid. The extension of Hartman's theorem for the
stochastic case is also available. Even though helpful in establishing a
correspondence between linear and non-linear #ows, such theorems are not
su$cient to establish a numerical procedure to simulate a non-linear #ow using
some suitably linearized #ow, even near "xed invariant sets.

3. A NEW PATHWISE LINEARIZATION SCHEME

To start with, consider the following non-linear ODE:

MxR N"M f (MxN, t), MxN3;LRn, t3R (2)

subjected to initial conditions

Mx (t
0
)N"Mx

0
N, (3)

If the vector "eld M f N is Cr, r*1 and (Mx
0
N, t

0
N3;LRn]R1, then according to

the existence and uniqueness theorem [14], there is a unique Cr local solution
Mx(Mx

0
N, t

0
, t)N for Dt!t

0
D su$ciently small. Moreover, the solution Mx (Mx

0
N, t

0
, t)N

can be extended backward and forward in time provided that it is bounded. Now,
for convenience of discussion, the following class of ODEs is considered:

MxK N#[c]MxR N#[k]MxN#Mm(MxN, MxR NN"MFN, x3Rn (4)

with the initial conditions

Mx (t
0
)N"Mx

0
N, MxR (t

0
)N"MxR

0
N. (5)

Here MFN is a vector-valued sinusoidal function with typical elements
F
i
"A

i
sin(j

i
t). However, it may be mentioned here that the discussion to follow

covers an even wider class of non-linear oscillators. Let the vector function MmN be
Cr, r*1, over the full range of state variables. Then the solution vector MMxN, MxR NNT
will also be Cr in t. At this stage, it is convenient to order the time axis as
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t
0
(t

1
(t

2
(2(t

i
(t

i`1
(2. Let the corresponding points on a solution

trajectory be denoted as MX
i
N"MMxN, MxR NNT, i"0, 1, 2... A knowledge of the

closed}open solution segment S
i
"[MX

i
N, MX

i`1
N)3R2n allows one to construct

the complete solution trajectory starting at MX
0
N by taking the union Z

i
S
i
. The

objective is to obtain a representation for the solution segment S
i
in terms of linear

ODEs, derivable from the originally non-linear ODE.
Now, over the semi-closed time interval ¹

i
"[t

i
, t

i`1
], the Cr solution trajectory

allows a Fourier series representation following the Stone}Weierstrass theorem
[15] and thus it may be argued that over the same time interval it is possible to
replace the non-linear ODE via an equivalent linear ODE, since the same Fourier
representation is obtainable from a linear system. In other words, the space of
solutions of the locally linearized system is dense in the space of all Cr functions
over S

i
. However, deriving such linear systems over each time interval is not

unique. Presently, in what follows, two di!erent schemes, explicit and implicit, are
proposed.

3.1. AN EXPLICIT SCHEME

First, it is assumed that the non-linear vector "eld of jth equation can be
decomposed as

m
j
(MxN, MxR N)"

n
+
k/1

b
jk

(MxN, MxR N)x
k
#

n
+
k/1

i
jk

(MxN, MxR N)xR
k
, k"1, 2,2, n. (6)

It is also assumed that interval S
i
is small enough to expand the functions b

jk
and

i
jk

in deterministic Taylor series and that limMXN?MX
1 N bjk

(XM ), and limMXN?MX
1 N ijk

(XM )
exist and are "nite for all points of singularity MXN"MXM N of the functions with j,
k"1, 2, 3,2, n. Now deterministic Taylor expansions of these functions about the
point MX(t

i
)N"MX

i
N, t*t

i
may be expressed as

b
jk

(MXN, t)"b
jk

(MX
i
N, t

i
)#

2n
+
l/1

Lb
jk

(MX
i
N, t

i
)

LX
l

(t!t
i
)

#(1/2!)
2n
+

l,m/1

L2b
jk

(MX
i
N, t

i
)

LX
l
LX

m

(t!t
i
)2#2#R (7)

and similarly for i
jk

. Here the term R on the RHS of the above equation denotes
the remainder set and t3¹

i
. In the above equation, only three terms have been

included in the hierarchical set. However, for better precision within a given time
interval, more terms in the Taylor expansion may be included. At this stage, it is
convenient to introduce a non-negative measure of the set ¹

i
as

h
i
"t

i`1
!t

i
3R`. (8)

It may now be readily observed that for any i3[0, R), h
i
may be chosen to be

su$ciently small such that over ¹
i
the variations of b

jk
and i

jk
are either small or
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negligible. Thus, it is possible to average out the explicit time dependence of these
functions over ¹

i
to arrive at the following constant approximations of b

jk
and i

jk
,

respectively,

b1
jk
"(1/h

i
) P

ti`hi

ti

b
jk

(MX
i
N, s) ds, i6

jk
"(1/h

i
)P

ti`hi

ti

i
jk

(MX
i
N, s) ds. (9)

With this approximation, it is possible to replace the originally non-linear ODE
(equation (4)) by the following time-invariant ODE with constant coe$cient
deemed to be valid uniformly over the time segment ¹

i
:

MyK N#[c]MyR N#[i6 (MX
i
N)]MyR N#[k]MyN#[b1 (MX

i
N)]MyN"MFN, (10)

where [b1 (MX
i
N], and [i6 (MX

i
N)] are, in general, n]n non-symmetric (possibly sparse)

matrices with typical elements b1
jk

and i6
jk

, respectively, and the initial conditions to
the above equations are M> (t

i
)N"M>

i
N"MX

i
N. Thus, the above system of ODEs are

conditionally linear given the initial values of the state variables at the start of the
interval. This would enable one to locally integrate these linear ODEs to have
a local approximation to the solution of the non-linear ODE over ¹

i
. The complete

solution is then obtained by joining the local solutions together.

3.2. AN IMPLICIT SCHEME

In what follows, an approximate replacement technique for the vector-valued
non-linear function Mm

j
(MXN) D j"1, 2, 3,2, nN based on the minimization of errors

is indicated [1, 2]. Here in the semi-closed interval ¹
i
, equation (4) is replaced by

the following system of conditionally linear ODEs:

MxK N#[c]MxR N#[k]MxN#[K(MX
i
N)]MxN#[C(MX

i
N)]MxR N"MFN, (11)

where the matrices [K] and [C] are diagonal n]n diagonal matrices with the jth
diagonal entry given by K

j
and C

j
respectively. Now, square of each element of the

error vector Me
i
N"Me

1, i
e
2, i

2e
n, i

NT over time interval ¹
i
:

e2
j, i
"P

Mxi
N`MD

i
N

Mxi
N P

Mxi
N`MciN

Mxi
N

(m
j
(MXN)!K

j
x
j
!C

j
xR
j
)2dx

j
dxR

j
(12)

may be minimized with respect to the unknown parameters K
j

and C
j

in the
following way for each i:

Le2
j, i

/LK
j
"Le2

j, i
/LC

j
"0. (13)

In equation (12), the jth elements of vector increments MD
i
N and Mc

i
N are given by

(D
j
)
i
"(x

j
)
i`1

!(x
j
)
i
, (c

j
)
i
"(xR

j
)
i`1

!(xR
j
)
i
. (14)
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Equations (13) and (14) together lead to 2n non-linear algebraic equations in 2n
unknown quantities D

j
, c

j
, j"1, 2,2, n for each i. In the special cases where the

vector function elements m
j
, j"1, 2, 3,2, n, are of one of the following forms:

m
j
"m

j
(MxN), m

j
"m

j
(MxR N), m

j
"k

1
(MxR N)x

j
, m

j
"k

2
(MxN)xR

j
(15)

only a set of n non-linear algebraic equations for D
j
, c

j
, j"1, 2,2, n, need to be

solved for each j.

3.3. ILLUSTRATIVE EXAMPLES

To illustrate the implementation of the above linearization schemes, a commonly
used non-linear single-degree-of-freedom (s.d.o.f.) oscillator, namely the hardening
Du$ng oscillator is taken up. It may be mentioned that this oscillator is
non-hyperbolic in the phase space when it is not perturbed by forcing and damping.
However, with a suitable choice of parameters and both damping and external
forcing terms included, the Du$ng oscillator even shows chaos. After suitable
normalizations, the oscillator is given by the following non-linear second order
ODE:

xK#2ne
1
xR #4n2e

2
(1#x2)x"4n2e

3
cos(2nt). (16)

Now, according to the notations followed here, it is observed that n"2, [c] and
[k] are scalar quantities with c"2ne

1
, k"4n2e

2
, m(x)"4n2e

2
x2. Using the

concept of pathwise linearization, the conditionally linear equivalent ODE, valid
over ¹

i
takes the form

yK#2ne
1
yR #4n2e

2
by"4n2e

3
cos (2nt). (17)

¹he explicit scheme: In this scheme, b is obtained by expanding x2 locally around
the point Mx

i
, xR

i
, tN in a Taylor series followed by time averaging over the interval

h
i
"t

i`1
!t

i
. This leads to the following expression for b:

b (x
i
, xR

i
, h

i
)"1#x2

i
#x

i
xR
i
h
i
#(1

3
) (xR 2

i
#x

i
xK
i
)h2

i
#R(O(h3

i
)), (18)

where xK
i
is given by

xK
i
"!2ne

1
xR
i
!4n2e

2
bx

i
#4n2m

3
cos(2nt

i
). (19)

At this point, it may be noted that the above procedure does not ensure the
positivity of b. To ensure this, one may expand x about x

i
, square the resulting

quantity and "nally average it over ¹
i

to arrive at a strictly non-negative
expression. Thus, for example, taking a three-term hierarchical expansion for
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x about x
i
, one obtains the following non-hierarchical expression for b:

b (x
i
, xR

i
, h

i
):1#x2

i
#x

i
xR
i
h
i
#(1

3
) (xR 2

i
#x

i
xK
i
)h2

i
#x

i
xK
i
h3
i
/4#xR 4

i
/20. (20)

In fact, ensuring positivity of some crucial terms may be of use in an error analysis.
The pair of eigenvalues associated with the complimentary function of
equation (17) are

ij
1,2

"!ne
1
$nJ(e2

1
!4e

2
b ). (21)

Now, the particular solution of equation (17) is

p
i
(t)"

e
3
(e
2
b!1)cos(2nt)#e

1
e
3
sin(2nt)

(e
2
b!1)2#e2

1

. (22)

The complete solution of equation (17) may be written as

y (t)"F
1i

(x
i
, xR

i
, h

i
) yR (t)"dF

1i
/dt"F

2i
(x

i
, xR

i
, h

i
), (23)

where

F
1i
"A

1i
expMij

1
(t!t

i
)N#A

2i
expMij

2
exp(t!t

i
)N#p

i
(t),

F
2i
"ij

1
A

1i
expMij

1
(t!t

i
)N#ij

2
A

2i
expMij

2
exp(t!t

i
)N#pR

i
(t), (24)

if ij
1,2

are real, otherwise

F
1i
"expM!ne

1
(t!t

i
)NMA

1i
cos(na

i
t)#A

2i
sin(na

i
t)N#p

i
(t),

F
2i
"!ne

1
expM!ne

1
(t!t

i
)NMA

1i
cos(na

i
t)#A

2i
sin(na

i
t)N

#na
i
expM!ne

1
(t!t

i
)NMA

2i
cos(na

i
t)#A

1i
sin(na

i
t)N#pR

i
(t),

a
i
"J4e

2
b!e2

1
. (25)

The constant A
1i

and A
2i

need to be determined from a knowledge of Mx
i
, xR

i
N

followed by solving a pair of simultaneous equations.
¹he implicit scheme: Following an error minimization as explained earlier, i.e.,

L2e/Lb"0, the expression for b is found to be

b(x
i
)"1#(x4

i
#2xx3

i
D
i
#2x3

i
D

i
#x

i
D3

i
#D4

i
/5)/(x2

i
#x

i
D

i
#D2

i
/3), (26)

where D
i
"x

i`1
!x

i
. The approximate solution vector My

i`1
, yR

i`1
N at time t"t

i
may be constructed in precisely the same way as in the explicit case (now, as
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a function of D
i
). Finally, D

i
may be solved from the following transcendental

equation:

y
i`1

:x
i`1

(x
i
, xR

i
, h

i
, D

i
)"x

i
#D

i
. (27)

Other implicit schemes may also be derived based on suitable choices for b as
functions of x

i
and x

i`1
. One such choice may be

b"J0)5(x
i
#x

i`1
)2. (28)

Such an approach is however computationally more involved in that it requires
solution of two non-linear algebraic equations for each i and hence is not further
elaborated upon in the present work.

3.4. NUMERICAL RESULTS

It is now appropriate to present a few numerical results to substantiate the
developments presented so far. In Figure 1, the phase plots of the unforced and
undamped hardening Du$ng oscillator as given by equation (16) are plotted using
the explicit version of the short time linearization (STL) procedure and di!erent
number of terms, N, in the short-time-averaged Taylor expansion. In the same
"gure, these results are compared with the ones obtained using a sixth order
Runge}Kutta scheme. It is observed that even using two terms in the expansion
leads to highly favourable agreements with the results obtained via the
Figure 1. Phase plot of undamped and unforced Du$ng's oscillator, e
2
"0)5, x

0
"1)0, xR

0
"0)1,

h"0)002: STL : N"2**; STL : N"3 } } } }; STL :N"4 - - - - -; STL : N"5 ) ) ) ) ) ) ) ) ); STL :N"6
} )} ) -; RKGS - - ) .
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Runge}Kutta scheme. In Figure 2, a one-periodic orbit, obtained via both the
present and Runge}Kutta schemes, is shown. It is known that for certain parameter
ranges, the hardening Du$ng oscillator exhibits chaos [5] and phase plots of one
such chaotic orbit are shown in Figure 3 for an increasing number of terms in the
averaged Taylor expansion and with h"0)01 expect for Figure 3(a) where
h"0)002. In the same "gure, also shown is the chaotic orbit obtained via a sixth
order Runge}Kutta scheme with h"0)002. It is again observed that the use of even
two terms in the Taylor series is su$cient to capture the strange attractor.
However, it may be mentioned that use of two terms requires a very short time step,
h"O (10~3) for prediction of chaotic orbits. The phase plot of a chaotic orbit using
STL with N"2 and h"0)01 is shown in Figure 4(a) and is found to be quite
inaccurate. It may also be noted that even a sixth order Runge}Kutta scheme with
h"0)01 also fails to obtain accurately the chaotic orbit, as shown in Figure 4(b). It
is worth mentioning here that like the explicit scheme, implicit schemes also lead to
similar results. These schemes have, however, been explored by Iyengar and Roy
[1, 2] and are therefore not touched upon here.

It is readily observed that the coe$cient b (x
i
, xR

i
, e

1
, e

2
, e

3
, h

i
, t

i
) in the linearized

equation (17) plays a crucial role in determining the accuracy of the new
linearization procedure. Of particular interest would be the convergence of this
conditionally constant coe$cient b with the number of terms, N, in the
short-time-averaging procedure. A few parametric studies for both periodic and
chaotic parameter values are reported in Figure 5, where b is plotted against
time step h

i
. It may be seen that for h

i
)0)01 even a two-term approximation
Figure 2. One-periodic limit cycle for Du$ng's oscillator, e
2
"0)25, e

2
"0)5, e

3
"1, h"0)002:

STL :N"2 **; STL :N"3 } } } }; STL : N"4 - - - - -; STL :N"5 ) ) ) ) ) ) ) ) ); STL : N"6 } ) } ) -;
RKGS - - ) .
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predicts b accurately enough. However, for parameter values corresponding to
a chaotic case, it is observed that higher values of h

i
may result in considerable

inaccuracy in the predicted response. An even more interesting result is reported in
Figure 6 where the coe$cient b has been plotted against the immediately preceding
Figure 3. A typical chaotic orbit for Du$ng's oscillator, e
1
"0)2, e

2
"0)51, e

3
"15.3. (a) Two

terms in the averaged Taylor's expansion, h"0)002, (b) three terms in the averaged Taylors
expansion, h"0)01, (c) four terms in the averaged Taylors expansion, h"0)01, (d) "ve terms in the
averaged Taylors expansion, h"0)01, (e) six terms in the averaged Taylors expansion, h"0)01,
(f ) simulation by Runge}Kutta (sixth order) scheme, h"0)002.
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time-instant t
i
. It may be seen that for "xed values of all other parameters, the

#uctuation of b is considerable in the chaotic regime and almost negligible in the
periodic regime. This is more clearly seen in the 3-D surface plots b}x

i
}t

i
, as shown

in Figures 7(a) and 7(b), and b}xR
i
}t

i
, and shown in Figures 7(c) and 7(d), for both

periodic and chaotic regimes with six terms in the short-time-averaging procedure.
This observation is in consonance with the known fact that the classical equivalent
linearization procedure works well for the strictly periodic cases, where the
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coe$cient b can be well approximated by a constant. Such an observation may
probably be used as an alternative characterization for chaotic orbits, but is not
touched upon here.

4. PATHWISE STOCHASTIC LINEARIZATION

Here it will be convenient to start with a class of s.d.o.f. oscillators straight away,
keeping in mind that the arguments are readily extendible to m.d.o.f. oscillators.



Figure 4. E!ect of time step size on the chaotic orbit. (a) Two terms in the averaged Taylor's
expansion, h"0)01, (g) simulation by Runge}Kutta (sixth order) scheme, h"0)01.
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Thus, the class of two-dimensional stochastic di!erential equations considered are
given by

xK#2ne
1
xR #4n2e

2
g (x)x"4n2e

3
cos(2nt)#p (t)m(t), (29)

where p(t)3¸2 ([0, #R), B([0, t]), k), t*0 denotes, in a sense, the strength of the
white noise m(t) which is in turn de"ned formally as m(t)"d=(t)/dt, and = (t) is



Figure 5. E!ect of the time step size on the parameter b. (a) periodic regime, e
1
"0)25, e

2
"0)5,

e
3
"1, x

0
"1, xR

0
"0)1, (b) chaotic regime, e

1
"0)25, e

2
"0)51, e

3
"15)3, x

0
"1, xR

0
"0)1:

STL :N"2 **; STL : N"3 } } } }; STL :N"4 - - - - -; STL :N"5 ) ) ) ) ) ) ) ) ); STL : N"6 } ) } ) .
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a Wiener process with independent Gaussian increments. The above SDE may
conveniently be recast in the following form:

dx
1
(t)"x

2
(t) dt"a

1
(x

1
, x

2
, t) dt

dx
2
(t)"M!2ne

1
x
2
!4n2e

2
g (x

1
)x

1
#4n2e

3
cos(2nt)Ndt#p (t) d=(t)

"a
2
(x

1
, x

2
, t) dt#p (t) d=(t). (30)
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The above equation reduces to the Du$ng oscillator for g(x)"1#x2. Given the
same ordering of the time axis as before, the essence of the idea is to "nd out a set of
conditionally linear SDEs or equivalently a set of conditionally Gaussian TPDs at
time t"t

i`1
, given the points in the state space at the immediately preceding time
Figure 7. Three-dimensional surface plots for the parameter b with time (periodic and chaotic
regimes): (a) plot b!x
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Figure 7. Continued.
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instant on the ordered axis, i.e., t"t
i
. Towards this end, one way is to suitably

linearize the state-dependent non-linearity coe.cient g (x) over the semi-closed
interval ¹

1
. To begin with, let &C'0 such that :

R
g (x) dx exists, is bounded below

by

P
x

0

g (t) dt*!C(1!x2) (31)

and is "nite. It is now intended to replace g (x) by a real constant over ¹
i
such that

the resulting SDE is linear with constant coe$cients in ¹
i
. Towards this, g(x) is "rst

expanded into an Ito}Taylor (alternatively called Wagner}Platen) series [8] as
follows:

g (x
1
(t))"g(x

1
(t
i
))#P

t

ti

¸(0)g(x
1
(t)) dt#P

t

ti

¸(1)g(x
1
(t)) dt, t3¹

i
. (32)

The operators, ¸(0) and ¸(1) are de"ned as

¸(0)g(x
1
)"A

L
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#x
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Lx
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2
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1
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where g@(x
1
)"(L/Lx

1
)g(x

1
). Now g@(x

1
) is expanded as
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"g(x
1
(t
1
))#x

2
(t
i
)g@ (x

1
(t
i
))Dt#P

t

ti
CP

t

ti

x2
2
(t)gA(x

1
(t))

#a
2
(s, x

1
(s), x

2
(s))g@(x

1
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t
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P

t
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1
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u
dt. (34)
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Expanding the terms of only the lowest order, i.e., : t
ti
:t
ti

p (u)g@(x
1
(u)) d=

u
dt, one

gets
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1
(u)) d=
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Now, for the Du$ng oscillator, the function g is independent of x
2

and hence the
third term of the right-hand side of the above equation vanishes. Thus to an
approximation of O(h

i
), one has

g(x
1
(t)):g (x

1
(t
i
))#x

2
(t
i
)g@(x

1
(t
i
))D

t
(36)

which is identical to a deterministic Taylor expansion. On the other hand, if one
continues to hierarchically expand and functional g, then O(h1>5

i
) approximation

yields
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where the double integral in the third term on the right-hand side of the above
equation reduces to

P
t

t1
P

t

ti

d=
u
dt"P

t

t1

(=(s)!= (t
i
)) ds"I

(0,1)Dt
, (38)

where I
(0,1)Dt

denotes the multiple stochastic integral (see Appendix A) following
Kloeden and Platen [8]. Similarly, to an approximation of O(h2

i
), one has
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In this way, one can, in principle, proceed with the Ito}Taylor approximation to
include higher order terms in the series and, thus, in the interval I, one "nally has

g (x
1
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a|AC

ga (ti , x1
(t
i
), x
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))Ia,Dt

# +
a |R(AC)
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where AC and R(AC) are, respectively, the hierarchical and residual sets of the
Ito}Taylor expansion (see Appendix A1) and C3M1

2
, 1, 3

2
, 2,2N may be considered

to be the &&order of linearization''. Moreover ga and Ia,Dt
are, respectively, the Ito

coe$cient functions and multiple Ito integrals (see Appendix AI) [8]. Now, in order
to make the linearized vector "eld strictly time invariant, g (x

1
) is replaced over I by

the following short-time-averaged form:

g (x
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, h
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where

D
z
"s!t

i
, t

i`1
*s*t

i
. (42)

Thus, over the interval I, one can replace the non-linear SDE, as in equation (35),
by the conditionally linear SDE given by
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3
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Here it may be pointed out that a similar approach based on a Stratonovich}
Taylor expansion is also possible and will lead to di!erent results only when the
stochastic excitation is multiplicative. Here, considering an additive case, if
g(x

1
)"1#x2

1
and p(t)"p"nG

0
, the twin operations of Ito}Taylor (or

Ito}Stratonovich) expansion followed by short-time averaging on g(x
1
) lead to the

following expression for b in I:
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(44)

A careful inspection of the above equation reveals the e!ect of stochasticity on the
present linearization procedure. In particular, the third term on the RHS of the
above expression is the crucial term that may be considered to be a higher order
stochastic correction term, the never comes into play in a purely deterministic
Taylor expansion. This basic technique of linearizing a non-linear SDE via
a stochastic Taylor expansion followed by a short-time averaging would henceforth
be referred to as &&pathwise stochastic linearization'' (PSL). The conditionally linear
SDEs are given by equation (43) may now be exploited for establishing certain
semi-analytical tools for a quantitative analysis of the non-linear stochastic #ow. In
what follows, a couple of such tools are detailed.
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4.1. SIMULATION USING PSL AND A HALF-DRIFT-IMPLICIT METHOD

As has already been indicated, SDE (43) may be treated as conditionally linear
over the interval I"[t

i
, t

i`1
), given the &&sharp'' values of the state variables Mx

i
, xR

i
N

at the left closed end, t
i
. Thus, each of the approximating state variables

Mjy(t), jyR (t) D j"1, 2,2, N
s
, t3IN, N

s
being the number of samples in the ensemble,

may be represented as jy"jx D jx
i
and jyR "jxR DjxR

i
. Now it is convenient to introduce

the following decomposition in I and ∀j3M1, 2,2, N
s
N, i3M1, 2, 3,2N:

jy(t)"jm (t)#jz (t), jyR (t)"jmR (t)#jzR (t) (45)

so that

jm(t)"Sjx (t) D jx
i
T, jmR (t)"SjxR (t) DjxR

i
T,

Sjz(t)T"SjzR (t)T"jz
i
"jzR

i
"0. (46)

This results in the following pair of second order di!erential equations in the
conditional quantities, jm and jz:

jmK#2ne
1
jmR #4n2e

2
bjm"4n2e

3
cos(2nt),

jzK#2ne
1
jzR#4n2e

2
b jz"=Q (t), t3I. (47)

Conditioned on the deterministic choice of Mjx
i
, jxR

i
N, the "rst of the above pair of

equations is a purely deterministic ODE, while the second one is a linear SDE with
zero initial conditions. In order to solve for this latter SDE, stochastic trapezoidal
or the half-drift implicit method is made use of. Thus, one has

jz
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, (48)

where m
i`1

3N(0, 1) with the symbol N denoting normal distribution. At this stage,
it is interesting to note that the use of zero initial conditions in equation (48) reduces
the implicit half-drift scheme to an explicit one and leads to the following simple
pair of equations:

jz
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"1
2
jz

i`1
h
i
,
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i`1

"JnG
0
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/(1#ne
1
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2
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i
). (49)

At each time instant along the ordered time axis, the above set of operations needs
to be performed for every j3M1, 2,2,N

z
N and thus one can march forward in time

to get the time history for the statistical moments as well as the evolving TPD.
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Success of this scheme in obtaining useful results crucially depends on accurate
generation of certain random quantities, namely 1/h

i
:ll`1
l1

:t
ti
=(s) dsdt and

:ll`1
l1

d= (s). These quantities are more conveniently written in terms of multiple
stochastic integrals as
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It is obvious that this pair of correlated random variables are jointly Gaussian with
zero mean. It now remains to determine their covariance matrix. First, it is noted
that

E (I2
(1), ti , ti`1

)"t
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!t
i
"h

i
. (51)

Exploiting the fundamental relationship between Ito integrals, Ia and Ib , given
by [8]
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one gets
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where the symbol I in equation (52) denotes the usual indicator function. Thus, all
the elements of the covariance matrix of the vector process Mjz

i`1
, jzR

i`1
N are now

determined.

4.2. A SCHEME BASED ON FOKKER}PLANCK EQUATION APPROACH

The PSL technique described so far decomposes a given non-linear SDE
a countable set of conditionally linear SDEs, each valid over a su$ciently small
time interval on the suitably ordered time axis. Since the response of these
conditionally linear SDEs under Gaussian inputs are Gaussian, it may be
concluded that the conditional response of the non-linear, given the values of the
state variables at the immediately preceding time instant, is Gaussian under
Gaussian excitations and over a small time interval. This observation is not new
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and is quite consistent with the expansion of the Fokker}Planck operator over
a small time step, which leads to a conditionally Gaussian distribution for the
evolving TPD [11]. These conditionally Gaussian TPDs can be readily generated
within the framework of the PSL scheme, making use of the well-known theory of
linear random vibration. These TPDs may then be used for generating random
state variables at the current time instant. In order to generate these TPDs, the
same decomposition as in equations (45) and (46) are used, leading, as before, to
equations (47) in conditional mean and random perturbation, jm and
jz respectively. The ODE in jm, being deterministic and linear, can be solved
analytically. Moreover, the stochastic variation jz is Gaussian with zero mean. It
only remains to obtain the non-stationary covariance matrix of the pair process
jzN"Mjz, jzR N. This may be conveniently done by solving the associated
Fokker}Planck equation in the non-stationary regime by the Fourier transform
method [16]. The drift coe$cients pN "Mp

i
, i"1, 2N and di!usion coe$cients

qN "Mq
i, j

, i, j"1, 2N corresponding to the second of equations (47) valid over
t3[t

i
, t

i`1
) are given by
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Equivalently,

pN "¹(jzN ). (55)

The two eigenvalues associated with the conditional endomorphism ¹ are
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where k"J!1. Now jzN (t) is linearly transformed to jrN (t) so that

jrN (t)"[C]jz (t) (57)

with

[C]¹[C]~1"diagMj
1

j
2
N. (58)

The elements of the matrix [C] can be readily found from the eigenvectors of ¹.
Now in terms of the transformed vector process jrN (t) the di!usion coe$cients v

ij
may be found as

[v
ij
]"[C][P][C]T, (59)
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where the elements of the matrix [P] are given by

p
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"0, p
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"nG

0
. (60)

The conditional TPD p (jrN (t) DjrN (t
i
)) is bivariate Gaussian with the mean vector

m
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and the covariance matrix
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)ND. (62)

At this stage the mean and covariance matrices of the bivariate Gaussian process
jzN (t) may be extracted as

mN
z6
(t)"[C]~1mN

r6
(t), z6 C (t)"[C]~1[r6 C(t)][C~1]T. (63)

Thus, the conditionally Gaussian local distribution of the evolving #ow is
completely de"ned.

The following set of operations may be used for a fast stochastic simulation
of a given SDE. The phase space is "rst represented discretely at t"t

i
by a

"nite number of points jxN
i
"Mjx

i
, jxR

i
D j"1, 2,2, N

z
, i3M1, 2,2,RNN, and

corresponding to every such point the methodology as outlined above may be used
for generating the bivariate (multivariate in case of systems of dimension greater
than 2) and zero-mean conditionally Gaussian TPD over a given short time step.
Standard schemes, such as Box}Muller or Polar}Marsaglia methods [ ] may be
used for generating the independent and zero-mean Gaussian random variables
MjG

1
, jG

2
N. The state variables Mjx

i`1
, jxR

i`1
N may now be obtained as
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, (64)

where jm
i`1

and jmR
i`1

are found by analytically solving the mean equation ("rst of
equations (47)) and w

0
, w

1
, w

2
are real numbers calculated from

w
0
"JjzC

11
(t
i`1

), w
1
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12
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(t
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)
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2
"Jw2
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, (65)

starting with t"t
0
, i.e., the initial time the above set of operations may be carried

out repeatedly to move forward in time.
Here it is worth noting that a somewhat similar procedure as outlined in this

subsection has been tried out by Askar et al. [10] wherein the drift coe$cients have
been linearized using di!erent moving averaging techniques, which allowed the
construction of the conditionally Gaussian distribution. However, the present
method is believed to be more accurate due to a better approximation of the sample
paths.
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4.3. NUMERICAL RESULTS

A few numerical results obtained for a class of non-linear SDOF oscillators will
be presented here to illustrate the schemes outlined in sections 4.1 and 4.2.
Extension to non-linear m.d.o.f. oscillators should present no further di$culties
than more elaborate algebraic manipulations. The hardening Du$ng oscillator
(equation (35)) with g(x)"1#x2 and p (t)"JnG

0
is taken up for further

considerations. It may be pointed out here that under purely stochastic excitation,
i.e., e

3
"0, there is a stationary solution for the associated (reduced)

Fokker}Planck equation. The analytical expression for this TPD is available in
closed form and is given by

p (x, xR )"D exp A!
4n2e

1
e
2

G
0

(x4#2x2)!
2e

1
G

0

xR 2B, (66)

where D is a normalization constant and has the form
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P
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expA!
4n2e

1
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G
0

(x4#2x2)Bdx P
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~=

expA
2e

1
G

0

xR 2BdxR
. (67)
Figure 8. Stationary TPD for the Du$ng oscillator under white noise excitation: (a) process x (t),
(b) process xR (t). e fast

}
MCS; K half

}
drift; e. exact.
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It may be observed that the above non-Gaussian stationary distribution has zero
mean, and so is re#ected in Figure 8 where the stationary TPDs of the displacement
and velocity processes are shown using both PSL with the half-drift implicit scheme
(henceforth called method 1) and the simulation scheme of section 4.2 (henceforth
called method 2). In the same "gure, these stationary TPDs are compared with the
corresponding exact stationary TPDs as given by equations (66) and (67). The
comparison seems to be very good especially so for method 1 and for a reasonably
high sample size (N

z
"10 000 onwards). In case e

3
O0 and G

0
"0, i.e., the

oscillator is deterministically forced, it is well known that multiperiodic as well as
chaotic response is possible. For example, a period 3 orbit is shown in Figure 9(a)
using the deterministic version of the piecewise linearization procedure as outlined
in section 3.3. It is now of interest to see the e!ect of a stochastic perturbation in the
form of a weak white noise on the three periodic orbit. Thus the corresponding
non-stationary TPD at time t"50 s is shown in Figure 9(b) using method 2, 16 000
samples and a time step of 0)01. The TPD is distinctly multimodal with three
conspicuous peaks. In Figure 3, a chaotic orbit with G

0
"0 and in Figure 10, the

corresponding TPD with G
0
"0)1 are shown. Even though the non-stationary

nature of the TPD is clear enough, no discernible multimodal structure can be
associated with this. It is of interest to observe that deterministic chaos in the
hardening Du$ng oscillator does not take place via a series of homoclinic
bifurcations route, and thus it is expected that an addition of random noise of
su$ciently weak intensity is unlikely to disturb the strange attractor, at least over
a certain parameter range. This rather super"cial observation is veri"ed in
Figure 9. E!ect of white noise on a typical 3-periodic orbit of the Du$ng oscillator, e
1
"0)25,

e
2
"3, e

3
"11)1. (a) deterministic 3-periodic orbit, (b) non-stationary TPD under combined deter-

ministic forcing and weak white noise, G
0
"0)1.



Figure 9. Continued.

Figure 10. E!ect of white noise on a typical chaotic orbit of the Du$ng oscillator, e
1
"0)2,

e
2
"0)51, e

3
"15)3, G

0
"0)1.
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Figure 11(a) where the phase plot of mean and its derivative is shown. This
observation is further supported in Figures 11(b) and 11(c) where the evolutions of
mean and variance functions are plotted with time. Curiously enough, it may be
observed that after a certain time interval, the variances of both x(t) and xR (t) jump
up, thereby con"rming the exponential separation of nearby trajectories, as in the
case of deterministic chaos [17]. Even more interesting is the case shown in
Figure 11. Persistence of the strange attractor under weak white noise, e
1
"0)2, e

2
"0)51,

e
3
"15)3, G

0
"0)1: (a) the phase plot of mean and its derivative, (b) evolutions of mean and variance

of the process x (t), (c) evolution of mean and variance of the process xR (t).



Figure 11. Continued.
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Figures 12(a)}12(c) with a very high noise intensity, namely, G
0
"3)0. Even in such

a case, the essential characteristics of a stochastic version of chaos, similar to
Figures 11(a)}11(c), are visible. Chaos in this oscillator is generic in some sense. On
the other hand, for ranges of parameters corresponding to periodic cases only
Figure 12. Persistence of the strange attractor under strong white noise, e
1
"0)2, e

2
"0)51,

e
3
"15)3, G

0
"3)0: (a) the phase plot of mean and its derivative, (b) evolutions of mean and variance

of the process x (t), (c) evolution of mean and variance of the process xR (t).
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under deterministic forcing, addition of noise does not generally lead to any
qualitative change in the response scenario. This is observed in Figure 13(a) where
the existence of the hyperbolically stable focus in the m}mR plane is visible
and in Figures 13(b) and 13(c) where no jumps in variances are observable, as
expected.
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5. DISCUSSION AND CONCLUSIONS

A novel linearization procedure for deterministic and stochastic non-linear
engineering systems has been proposed here for semi-analytical simulations. The
procedure outlined in this paper marks a sharp deviation from the standard
equivalent linearization scheme (EQL) [18] in that the present method claims to
accurately preserve even the most complicated topological characteristics in
deterministic or stochastic response of these systems. Thus, in case of deterministic
Figure 13. Persistence of the hyperbolically stable focus under white noise, e
1
"0)2, e

2
"0)5,

e
3
"0)0, G

0
"0)1: (a) the phase plot of mean and its derivative, (b) evolutions of mean and variance of

the process x(t), (c) evolution of mean and variance of the process xR (t).
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non-linear systems, the current procedure is accurate enough for predicting
multi-periodic, almost periodic and chaotic orbits of the evolving #ow. In case of
purely stochastic excitations in the form of Gaussian white-noise processes
non-linearity in the vector "eld leads to non-Gaussianity of the TPD. The present
scheme has the potential to correctly describe non-Gaussianity and
non-stationarity of the response TPDs.

The technique may further be exploited for consistent derivations of higher order
linearization schemes in deterministic and stochastic cases. This is achieved by
including more and more terms in the short-time averaged Taylore or Ito}Taylor
(as the case may be) expansions, which is necessary for linearizing the non-linear
terms in the vector "eld. Limited results showing comparisons of TPDs obtained
via the present set of schemes with the available exact analytical expressions in the
stationary regime are also a pointer to the accuracy and correctness of this new
linearization procedure. In case of combined stochastic and deterministic
excitations, all the three features of non-stationarity, non-Gaussianity and
multimodality of the response TPD are clearly brought out. Among the two
di!erent numerical methods proposed in sections 4.1 and 4.2, method 1 (section 4.1)
combining the linearization scheme with the half-drift implicit scheme is observed
to be more accurate than method 2, i.e., the simulation procedure of section 4.2.
Method 2 is, however, found to be much more e$cient computationally. The
reason behind this is the way in which the conditionally Gaussian non-stationary
TPDs are computed from the associated Fokker}Planck equation. Given
a particular vector "eld with the associated parameters completely de"ned, the
functional form of these conditional TPDs does not change from point to point or
from time to time. However, one has to use very accurate random number
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generators with double-precision arithmetic to ensure accuracy. Here it may be
relevant to point out that an expansion of the Fokker}Planck operator over a very
short time interval, sometimes referred to as the path integral formalism [11, 12],
also leads to conditionally Gaussian TPDs as in method 2 of the present study.
However, a disadvantage of the path integral method is that, over a short time
interval, the conditionally Gaussian TPD does not take into account the
cross-correlation of x

i`1
and xR

i`1
. Such a shortcoming is, however, overcome in

the present scheme (method 2), where this cross-correlation is duly re#ected.
A major advantage of the new linearization procedure is its semi-analytical

nature, which may be suitably exploited to obtain more information about the
original #ow. In particular, it may be noted that the tangent spaces of the
non-linear vector "eld at di!erent solution points. A topological analysis of these
tangent spaces is therefore necessary to lay appropriate mathematical foundations
for the principles of conditional linearization. An important issue not yet addressed
is the accumulation of local and global errors in the PSL-based implicit schemes for
deterministic and stochastic cases. Other related issues, still unaccomplished, are
the veri"cations of numerical e$ciency of the proposed schemes vis-a-vis other
numerical schemes and, even more importantly, stability of these algorithms
especially near the boundaries of basins of attraction. Moreover, discontinuous
vector "elds have not been included in the present paper. In particular, extensions
of the principles PSL to include Dirac delta-type discontinuity will be an interesting
and useful exercise.
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APPENDIX A: AN EXPLANATION OF THE SYMBOLS
USED IN STOCHASTIC TAYLOR EXPANSION

Consider vector Ito stochastic process XM
t
"MXi

t
D i"1, 2,2, dN3Rd driven by

a vector Wiener process =M
t
"M=j

t
D j"1, 2,2, mN, where d and m are positive

integers. The Ito stochastic di!erential equations are

Xi
t
"Xi

t0
#P

t

t0

ai (s, XM
s
) ds#

m
+
j/1
P

t

t0

bij (s, XM
s
) d=j

s
. (A1)

An Ito}Taylor expansion of Xi
t
may be performed by repeatedly applying the Ito

formula (see below) to the drift coe$cients ai (s, XM
s
) and di!usion coe$cients

bij(s, XM
s
). The Ito formula for a su$ciently di!erentiable scalar function f (XM

t
, t) is

f (XM
t
, t)"f (XM

t0
, t)#P

t

t0

¸0 f (XM
s
, s) ds#

m
+
j/1
P

t

t0

¸1j f (XM
s
, s) d=j

s
, (A2)

where the operators ¸0 and ¸1j are de"ned as

¸0"
L
Lt
#

d
+
i/1

ai
L

LXi
#0)5

d
+

i,k/1

m
+
j/1

bijbkj
L2

LXiLXk
,

¸1j"
d
+ bij

L
LXi

. (A3)

i/1
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Multiple stochastic integrals: While deriving the stochastic Taylor expansion, one
comes across multiple stochastic integrals of the type :t

t0
:sl
t0
:sl~1
t0

2

:s2
t0

d=j1
sl
2d=jl~1

sl~1
d=jl

sl
where the set of superscripts a"[ j

1
j
2
,2, j

l
N3M is called

a multi-index, M is the set of multi-indices, j
i
3M0, 1,2,mN, i3M1, 2,2, lN. Here it

is important to note that =0
t
"t, by de"nition. The positive integer

l"l(a)3M1, 2,2N is called the length of the multi-index a. For completeness of
de"nition, v3M denotes a multi-index of length zero. In addition, n(a) is de"ned to
be the number of components in a which are equal to zero. For any a3M with
l(a)*1, one de"nes a! and !a to be the multi-indices in M by deleting the last
and "rst components of a respectively.

Now the multiple Ito integral Ia on a right continuous stochastic process f (t, u),
t*0 with left-hand limits is recursively de"ned as follows. If o(u) and q(u) are two
stopping times with 0)o)q w.p.l, then

Ia[ f ( . )]o, q"f (q), l (a)"0,

"P
q

o
Ia~ [ f ( . )o, sds, l (a)*1, j

l
"0,

"P
q

o
Ia~ [ f ( . )o, sd=ji

s
, l (a)*1, j

l
*0. (A4)

If f (t)"1, then Ia[ f ( .)]o, s is often abbreviated as Ia,o,s . Moreover, the two
stopping times are also removed sometimes from the subscripts in case they are
clear from the context. It may be useful to consider the following illustrations:

I
(0)

[ f ( . )]
ti , ti`1

"P
ti`1

ti

f (s) ds, I
(1)

[ f ( . )]
ti , ti`1

"P
ti`1

ti

f (s) d=1
s
,

I
(0,2,1),0,t

"P
t

0
P

s3

0
P

s2

0

ds
1
d=2

s2
d=1

s3
. (A5)

Coe.cient functions: Like the multiple Ito integrals, the Ito coe$cient function,
fa , are also de"ned recursively as

fa"f, l(a)"0,

"¸1j1 f
~a , l (a)*1 (A6)

for each a"M j
1
, j

2
,2, j

l
N and the function f is at least Ch, h"l (a)#n (a). The

operator ¸1j1 is as de"ned in equation (A3) with the superscript j replaced by j
1
. As

an illustration, consider an one-dimensional case, d"m"1 for f (t, x),x. Then
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from equation (A6), one can write down the following Ito coe$cient functions:

f
(0)

"a, f
*1+
"b, f

(1,1)
"bb@, f

(0,1)
"ab@#0)5b2bA, (A7)

where the prime @ denotes the derivative w.r.t. the variable x.
Hierarchical and remainder sets: A subset ALM is a hierarchical set if A is

non-empty, the multi-indices in A are uniformly bounded in length (i.e., l (a)(R if
a3A) and if !a3A for each a3ACMvN. Note that MvN is the null index set. If an
Ito}Taylor expansion is performed for a given hierarchical set, then the remainder
set consists of all the remaining higher order multiple stochastic integrals. More
precisely, for any given hierarchical set A, the remainder set R(A) is de"ned as

R (A)"Ma3MCA D!a3AN. (A8)

For example, the sets MvN, Mv, (0), (1)N, Mv, (0), (1), (1, 1)N are hierarchical sets. Also for
m"1, one has, among others, the following remainder sets:

R(MvN)"M(0), (1)N, R(Mv, (0), (1)N)"M(0, 0), (0, 1), (1, 0), (1, 1)N,

R(Mv, (0), (1), (1, 1)N)"M(0, 0), (0, 1), (1, 0), (0, 1, 1), (1, 1, 1)N. (A9)

Similar such symbols are available for Stratonovich}Taylor expansion as well.
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